Espadas persas muy curvadas: propiedades y especificaciones estructurales

Autores/as

DOI:

https://doi.org/10.3989/gladius.2022.07

Palabras clave:

Shamshir (šamšir), espada, egrima, acero de crisol, Persia, espadas curvas, fuerzas de corte, sables

Resumen


Las espadas persas muy curvadas, denominadas shamshir (šamšir), alcanzaron su máxima curvatura y popularidad en los siglos XVI-XVII y seguían siendo el tipo de espada preferida en los campos de batalla por los ejércitos persas. Aunque se han llevado a cabo numerosas investigaciones sobre sus materiales y métodos de forja, hasta donde sabemos, no existe ninguna investigación científica sobre su rendimiento mecánico general ni ningún análisis científico de su excepcional forma. El siguiente artículo ofrece un análisis exhaustivo de la curva alta de las espadas persas y demuestra que esta curva alta proporcionaba una fuerza de corte máxima de la espada y también permitía ciertas formas de empuje que pasaban por encima y por debajo del escudo del adversario en el campo de batalla.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alexander, D. (2001): “Swords and Sabers during the Early Islamic Period.” Gladius XXI: 193-220.

Allan, J. (1979): “Persian Metal Technology 700- 1300 A.D.” Oriental Institute Monographs, no. 2, Oxford.

Alipour, R. and Rehren, T. (2014): “Persian Pūlād Production: Chāhak Tradition.” Journal of Islamic Archaeology, 1 (2): 231-261.

Almén, T.; Smide, G. and Svensson, G. (2007): Reproduction of Damascus Steel (Wootz): Patterns and Blade Forging. Västerås: Mälardalens University Press.

Atkins, T. (2006): “Optimum Blade Configurations for the Cutting of Soft Solids.” Engineering Fracture Mechanics, 73: 2523-2531.

Bahill, A. T. and Karnavas, W. J. (1989): “Determining Ideal Baseball Bat Weights Using Muscle Force- Velocity Relationships.” Biological Cybernetics, 62: 89-97.

Brody, H. (1986): “The Sweet Spot of a Baseball Bat.” American Journal of Physics, 54: 640.

Callahan, D. M. and Kent-Braun, J. A. (2011): “Effect of old age on Human Skeletal Muscle Force-Velocity and Fatigue Properties.” Journal of Applied Physiology, 111 (5): 1345-1352.

Chen, X.; Xia, J.; Peng, J.; Li, W. and Xie, S. (2000): “Carbon-Nanotube Metal-Matrix Composites prepared by Electroless Plating.” Composites Science and Technology, 60 (2): 301-306.

Chodynski, A. and Kobylinski, L. (2000): Persian and Indo-Persian Arms and Armour of 16th-19th Century from Polish Collection; Catalogue Expedition. Malbork, Malbork Muzeum.

Christensen, and Aagaard, P. (2005): “Changes in the Human Muscle Force-Velocity Relationship in Response to Resistance Training and Subsequent Detraining.” Journal of Applied Physiology, 99: 87-94.

Cross, R. (2004): “Center of Percussion of Hand-held Implements.” American Journal of Physics, 72: 622.

Denny, M. (2006): “Swordplay: An Exercise in Rotational Dynamics.” European Journal of Physics, 27: 943-950.

Emami, M. and Karamad, Z. (2012): “Chemical-Mineralogical Studies on iron crucibles from Chahak, Iran.” Proceedings of the 39th International Symposium for Archaeometry. Leuven: 86-90.

Farahvashi, B. (2002): Farhang Farsi be Pahlavi [The Lexicon of Persian into Pahlavi]. Tehrān,

Entešārāt-e Dānešgāh Tehrān. Fedrigo, A.; Grazzi, F.; Williams, A. R.; Panzner, T.; Lefmann, K.; Lindelof, P. E.; Jørgensen, L., Pentz, P.; Scherillo, A.; Porcher, F. and Strobl, M. (2017): “Extraction of archaeological information from metallic artefacts—A neutron diffraction study on Viking swords.” Journal of Archaeological Science: Reports, 12: 425-436.

Figiel, L. S. (1991): On Damascus Steel. Atlantis, Atlantis Art Press.

Floor, W. (2003). Traditional Crafts in Qajar Iran (1800-1925). Costa Mesa: Mazda Publishers.

Forbes Manz, B. (1999): The Rise and Rule of Tamerlane. Cambridge, Cambridge University Press.

Kimm, D. and Thiel, D. V. (2015): “Hand Speed Measurements in Boxing.” Procedia Engineering, 112: 502- 506.

Krauss, G. (1990): Steels: Heat Treatment and Processing Principles. Materials Park, ASM International.

Lakomy, H. K. A. (1993): “Laboratory Measurement of Human Power Output during Maximum Intensity Exercise.” Physics Education, 28: 376. https://doi.

MacKenzie, D. N. (1971): A Concise Pahlavi Dictionary. London, Oxford University Press.

Master Pieces of Persian Painting (2011): Tehran, Tehran Museum of Contemporary Art.

McEvoy, K. P. and Newton, R. U. (1998): “Baseball Throwing Speed and Base Running Speed: The Effects of Ballistic Resistance Training.” Journal of Strength and Conditioning Research, 12 (4): 216-221.

Misawa, T. and Komazaki, S. I. (2002): “Ductile-Brittle Transition Evaluation of Japanese Sword and Weird Metals Using Miniaturized Impact Specimens,” D. François and A. Pineau (eds.), From Charpy to Present Impact Testing. Oxford, Elsevier Science: 119-126.

Moshtagh Khorasani, M. (2006): Arms and Armor from Iran: The Bronze Age to the End of the Qajar Period. Tübingen, Legat Verlag.

Moshtagh Khorasani, M. (2010): Lexicon of Arms and Armor from Iran: A Study of Symbols and Terminology. Tübingen, Legat Verlag.

Moshtagh Khorasani, M. (2013): Persian Archery and Swordsmanship: Historical Martial Arts of Iran. Frankfurt am Main: Niloufar Books.

Moshtagh Khorasani, M. and Hynninen, N. (2013): “Reproducing Crucible Steel: A Practical Guide and a Comparative Analysis to Persian Manuscripts.” Gladius, 33: 157-192.

Nicolle, D. (1982): The Armies of Islam: 7th-11th Centuries. Oxford, Osprey Publishing.

Okayasu, M. (2015): “Mechanical Properties of Samurai Swords (Carbon Steel) Made Using a Traditional Steelmaking Technology (tatara).” Journal of Material Sciences & Engineering 4 (2): 1-6.

Perttula, J. (2001): “Reproduced Wootz Damascus Steel.” Scandinavian Journal of Metallurgy, 30 (2): 65-68.

Perttula, J. (2004): “Wootz Damascus Steel of Ancient Orient.” Scandinavian Journal of Metallurgy, 33 (2): 92-97.

Peterson, D.T.; Baker, H. H. and Verhoeven, J. D. (1990): “Damascus Steel, Characterization of One Damascus Steel Sword.” Materials Characterization, 24 (4): 355-374.

Piaskowski, J. (1978): “Metallographic Examination of Tow Damascene Steel Blades.” Journal for History of Arabic Science, 2: 3-30.

Reibold, M., Paufler, P.; Levin, A. A.; Kochmann, W.; Pätzke, N. and Meyer, D. C. (2006): “Carbon Nano Tubes in an Ancient Damascus Sabre.” Nature, 444: 286. h

Roberts, T. J. (2016): “Contribution of Elastic Tissues to the Mechanics and Energetics of Muscle Function during Movement.” Journal of Experimental Biology, 219 (2): 266-275.

Salvetat, J. P.; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W. and Zuppiroli, L. (1999): “Mechanical Properties of Carbon Nanotubes.” Applied Physics A, 69: 255-260.

Sela, R. (2011): The Legendary Biographies of Tamerlane: Islam and Heroic Apocrypha in Central Asia. Cambridge, Cambridge University Press.

Sukhanov, D. A.: Arkhangelsky, L. B. and Plotnikova, N. V. (2017): “Damascus steel ledeburite class.” IOP Conf. Series: Materials Science and Engineering, 175: 1-7.

Turner, G. L. (2002): Dynamics of Hand-Held Impact Weapons. Association of Renaissance Martial Arts.

Verhoeven, J. D. (1987): “Damascus Steel, Part I: Indian Wootz Steel.” Metallography, 20 (2): 145-151.

Verhoeven, J. D., Pendray, A. H. and Dauksch, W. E. (1998): “The Key Role of Impurities in Ancient Damascus Steel Blades.” Archaeotechnology, 50: 58-64.

Verhoeven, J. D.; Pendray, A. H.; Dauksch, W. E. and Wagstaff, S. R. (2018): “Damascus Steel Revisited”. JOM 70: 1331-1336.

Williams, A. R. (2007): “Crucible Steel in Medieval Swords,” S. LaNiece, D. Hook and P. Craddock (eds.), Metals and Mines. London: 233-241.

Yaso, M.; Takaiwa, T.; Minagi, Y.; Kanaizumi, T.; Kubota, K.; Hayashi, T.; Morito, S. and Ohba, T. (2012): “Study of Japanese sword from a Viewpoint of Steel Strength.” Journal of Alloys and Compounds, 577 (1): S690-S694.

Descargas

Publicado

2022-12-30

Cómo citar

Moshtagh Khorasani, M. ., & Arjmandi, N. . (2022). Espadas persas muy curvadas: propiedades y especificaciones estructurales. Gladius, 42, 111–121. https://doi.org/10.3989/gladius.2022.07

Número

Sección

Artículos